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Abstract

Two new solutions to the heat conduction equation, describing transient heating of

an evaporating droplet, are suggested. Both solutions take into account the e�ect

of the reduction of the droplet radius due to evaporation, assuming that this radius

is a linear function of time. It has been pointed out that the new approach predicts

lower droplet surface temperatures and slower evaporation rates compared with the

traditional approach. New solutions to the heat conduction equation, describing

transient heating of an evaporating droplet, are suggested, assuming that the time

evolution of droplet radiusRd(t) is known. The results of calculations are compared

with the results obtained using the previously suggested approach, when the droplet

radius was assumed to be a linear function of time during individual time steps, for

typical Diesel engine-like conditions. Both solutions predict the same results which

indicates that both models are likely to be correct.

Two new solutions to the equation, describing the di�usion of species during

multi-component droplet evaporation, are suggested. The �rst solution is the explicit

analytical solution to this equation while the second one reduces the solution of the

di�erential species di�usion equation to the solution of the Volterra integral equation

of the second kind. Both solutions take into account the e�ect of the reduction of

the droplet radius due to evaporation, assuming that this radius is a linear function

of time. The analytical solution has been incorporated into a zero dimensional

CFD code and applied to the analysis of bi-component (50% ethanol { 50% acetone

mixture) droplet evaporation at atmospheric pressure.

The transient heat conduction equation, describing heating of a body immersed

into gas with inhomogeneous temperature distribution, is solved analytically, assu-

ming that, at a certain distance from the body, gas temperature remains constant.

The solution is applied to modelling of body heating in conditions close to those

observed in Diesel engines. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature.
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Nomenclature

a; b coe�cients introduced in Equation (2.7) or 1=
p

�

ab;g coe�cients introduced in Eq. (5.9) (
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1) models based on the assumption that the droplet surface temperature is uni-

form and does not change with time;

2) models based on the assumption that there is no temperature gradient inside

droplets (in�nite thermal conductivity of liquid);

3) models taking into account �nite liquid thermal conductivity, but not the

re-circulation inside droplets (conduction limit);

4) models taking into account both �nite liquid thermal conductivity and the

re-circulation inside droplets via the introduction of a correction factor to the liquid

thermal conductivity (e�ective conductivity models);

5) models describing the re-circulation inside droplets in terms of vortex dyna-

mics (vortex models);



alternative approach was suggested and developed in [1, 15{17, 52]. In these papers

both �nite liquid thermal conductivity and recirculation inside droplets (via the

e�ective thermal conductivity (ETC) model [44]) were taken into account by incor-

porating the analytical solution to the heat conduction equation inside the droplet

into a numerical scheme. The liquid thermal conductivity inside droplets was repla-



assumption that species inside droplets mix in�nitely quickly. Models containing

features of both these groups of models have been suggested in [66]. Most of the

models belonging to the �rst group are based on the numerical solution to the spe-

cies di�usion equation inside droplets. At the same time the analysis of [38, 50] was

based on the analytical solution to this equation. The model in [38] was applied to

the analysis of heating and evaporation of bi-component ethanol/acetone droplets.

The authors of [38] based their analysis on the analytical solution to the species

di�usion equation, which was incorporated into the numerical code. This approach

is expected to be more CPU e�cient and accurate compared with the one based on

the conventional approach [50]. The model described in [38] has been generalised in

[50] to take into account coupling between droplets and gas. None of these models

took into account the e�ects of the moving boundary due to evaporation on the

species di�usion equation.

Most of the models of droplet heating and evaporation suggested so far are based

on the assumption that gas in computational cells is always homogeneous and the

gas temperature in the immediate vicinity of the droplet surface is the same as

in the rest of the cell [1, 37]. The droplet heating in this case is described based



model described in [67]. The latter model is based on an approach which di�ers

from the one used in [52]. One of the main limitations of the model described

in [52] is that it was based on the assumption that initially gas temperature was

homogeneous in the whole domain. This imposes a serious limitation for practical

applications of this model in a realistic environment when the ambient temperature

can vary with time.

Near-critical and supercritical droplet heating and evaporation was covered in

relatively recent reviews [68, 69], and [64]. Analysis of the interaction between

droplets, collisions, coalescence, atomization, oscillations (including instabilities of

evaporating droplets) and size distribution were considered in [70{85]). The pro-

blem of heating and evaporation of droplets on heated surfaces was considered in

[82, 86]. The problem of droplet heating and evaporation is related to spray com-

bustion (see [9, 10, 87{89]). Two groups of models for radiative heating of droplets

have been considered: the one based on the assumption that droplets are opaque

grey spheres [42, 47, 90], and the one based on the assumption that droplets are

semi-transparent for thermal radiation [91{97]. The �rst approach is the one used

in all CFD codes which are known to us, while the second one is much more ap-

propriate from the point of view of underlying physics. The Soret e�ect describes

the ow of matter caused by a temperature gradient (thermal di�usion), while the

Dufour e�ect describes the ow of heat caused by concentration gradients. The two

e�ects occur simultaneously. Both e�ects are believed to be small in most cases

although sometimes their contribution may be signi�cant (see [98{102]). Kinetic

and molecular dynamics e�ects on droplet heating and evaporation were considered

in [2{5, 7, 103, 104]. All e�ects mentioned in this paragraph will be ignored in our

analysis.

1.3 Structure of the thesis

In Chapter 2 a model for mono-component droplet heating and evaporation, based

on the assumption that droplet radius is a linear function of time during time steps,

is presented and discussed. A more general model, based on the assumption that

droplet radius is an a priori known function of time, is discussed in Chapter 3.
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In Chapter 4 the e�ects of the moving boundary on the solution to the species

di�usion equation in multi-component droplets are discussed. A model for body

heating/cooling, when this body is immersed into an ambient gas with temperature



Chapter 2

Transient heating of an

evaporating droplet when droplet

is a linear function of time

2.1 Introduction of Chapter 2

Taking into account the e�ect of receding droplet radius on droplet heating and

evaporation leads to the well known Stefan problem, which has been widely discussed

in the literature (e.g. [105]-[54]), but has been rarely applied to engineering sprays,

due to the complex structure. Hence, a substantial gap has developed between

mathematical and engineering research in this �eld. The main objective of this work

is to �ll this particular gap. This will include the development of an appropriate

mathematical model for speci�c spray applications, and the actual application of

this model to simulate droplet heating and evaporation processes in Diesel engine-

like conditions. There has been no previous research in this direction to the best of

our knowledge.

The essence of the di�erence between the new approach to the modelling of dro-

plet heating and evaporation, suggested in this chapter, and the traditional approach

is schematically illustrated in Fig. 2.1. As follows from this �gure, the approxima-

tion of the reduction of the droplet radius during the time step by the linear function

is noticeably much more accurate than the approximation based on the assumption

that the droplet radius is constant during the time step (the conventional approach

8



Figure 2.1: A schematic presentation of the plotRd versust for an evaporating

droplet (solid); approximation of this plot using the conventional approach assuming

that Rd = const during the time step (dotted); approximation of this plot using the

new approach assuming thatRd is the linear function of t during each time step

(dashed).

used in CFD codes). This di�erence, however, can be mitigated by choosing su�-

ciently small time steps (more time steps would be required in the case when the

reduction of droplet radius during the time step is ignored than in the case when it

is taken into account). A more important implication of the new approach, compa-

red with the traditional one, however, is that the e�ect of the reduction of droplet

radius on droplet heating is explicitly taken into account in the new approach at

every time step. This leads to the prediction of temperatures di�erent compared

with the ones predicted by the traditional approach, regardless of how many time

steps are used in the analysis. These di�erences in droplet temperatures lead to

di�erent time dependencies of droplet radii. These e�ects will be illustrated in this

chapter using examples of fuel droplet heating and evaporation in Diesel engine-like

conditions.

The basic equations and approximations of the new model are described in Sec-

tion 2. The analysis and solutions of these basic equations are given in Section 3.

In Section 4, one of these solutions is analysed for the values of parameters typical

for Diesel engines. The main results of the chapter are summarised in Section 5.
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2.2 Basic equations and approximations

Let us assume that an evaporating droplet is immersed into a homogeneous hot

gas at constant temperatureTg. The droplet is heated by convection, with the

convection heat transfer coe�cient h(t) depending on time t and droplet radius

Rd(t), and cools down due to evaporation.Rd(t) is a continuously di�erentiable

function of time in the range 0� t � te, where te is the evaporation time. Both

Rd(t) and h(t) are assumed to be known. E�ects of thermal radiation are taken into

account. The changes in the droplet temperature (T � T(t; R)) are described by

the heat conduction equation in the form [105, 106]:

@T
@t

= �

 
@2T
@R2

+
2
R

@T
@R

!

+ P(R) (2.1)

for 0 � t < t e, 0 � R < R d(t), where � is liquid thermal di�usivity ( � =

kl=(cl � l ) =const), kl is the liquid thermal conductivity, cl is the liquid speci�c heat

capacity, � l is the liquid density, R is the distance from the centre of the droplet.

The term P(R) takes into account the e�ects of thermal radiation, assuming

that droplets are semi-transparent (radiation can penetrate inside droplets). Various

approximations for P(R) were suggested in [91]{[107].

Remembering the physical background of the problem, we look for the solution of

this equation in the form of a twice continuously di�erentiable functionT � T(t; R)

for 0 � t < t e, 0 � R < R d(t). This solution should satisfy the boundary condition:
 

kl
@T
@R

+ hT

! �
�
�
�
�
R= Rd (t )

= hTg + � lL _Rd(t); (2.2)

T is �nite and continuous at R ! +0, Ts = T(Rd(t); t) is the droplet's surface

temperature, L is the speci�c heat of evaporation. We took into account that

_Rd(t) � dRd=dt � 0. E�ects of swelling are ignored. Equation (2.2) is just the

energy balance condition atR = Rd(t). The initial condition is taken in the form:

T(t = 0) = T0(R); (2.3)

where 0� R � Rd0 = Rd(t = 0).

The value ofRd(t) is controlled by fuel vapour di�usion from the droplet surface,

and can be found from the equation [1]:

_Rd = �
kg ln (1 + BM )

� lcpgRd
; (2.4)

10



where

BM =
Yvs � Yv1

1 � Yvs
; (2.5)

is the Spalding mass transfer number,Yfs is the mass fraction of fuel vapour

near the droplet surface:

Yfs =

"

1 +

 
p

pfs
� 1

!
M a

M f

#� 1

; (2.6)

Yv1 is the mass fraction of fuel vapour in ambient gas (in our analysis we assume

Yv1 = 0 ),

p and pfs are ambient pressure and the pressure of saturated fuel vapour near

the surface of the droplet respectively,M a and M f are molar masses of air and fuel;

pfs is calculated from the Clausius-Clapeyron equation presented in the form:

pfs = exp

"

a �
b

Ts � 43

#

; (2.7)

a and b are constants to be speci�ed for speci�c fuels,Ts is the surface temperature

of fuel droplets in K; pfs predicted by Equation (2.7) is in kPa.

In [15] it was assumed thatRd =const, while the contribution of _Rd was taken

into account by replacing gas temperature with the so called e�ective temperature.

It was assumed that this approach is applicable when used during relatively short

times (time steps in computational uid dynamics (CFD) codes), but it has never

been rigorously justi�ed. The focus of this chapter is on the e�ects of changing

droplet radius during the time step on the heating of droplets.

The current state of the development of mathematical tools for the solution of

this type of problem is described by Kartashov [105]. In the following analysis, some

of the results described in [105] will be adapted to the investigation of our problem.

A number of simplifying assumptions will be made. Firstly, the contribution of

thermal radiation will be ignored (P(R) = 0). Secondly, we assume thatRd(t) is

the linear function of t:

Rd(t) =(



108]. As follows from the analysis of [96], in the case when external temperature,

responsible for radiative heating, is about or less than 1000 K the e�ect of radiation

on droplet evaporation is less than about 1% (see Fig. 2.3 of [96]). This justi�es our

assumption that P(R) = 0.

The second assumption is justi�ed if the results are applied to a relatively short

period of time, whenRd(t) can be expanded into a Taylor series in time and only the

�rst two terms are retained (in our previous analyses and in all CFD codes known to

us, only the zeroth terms were used). In this case,t = 0 will refer to the beginning

of the time step t0, te will refer to t0 + � t, where � t is the time step.

Note that Brenn [54], considering a di�erent problem of calculating the concen-

tration �eld in evaporating droplets, assumed thatR2
d, rather than Rd, is a linear

function of time during the whole evaporation process:

R2
d(t) = R2

d0 � � 0t: (2.10)

This could be justi�ed by Eq. (2.4) assuming that BM = const. In our case this

assumption can be made during the time step but not during the whole evaporation

process. For su�ciently small time steps, both approaches lead to identical results

since:

Rd = Rd0

q
1 � � 0t=R2

d0 � Rd0(1 + �t );

where� = � � 0=(2R2
d0).

The problem considered in [54] is more general compared with the one considered

in this chapter, as the 3D e�ects on species concentrations were taken into account

in that paper. If only the radial dependence of this concentration is taken into

account, Eq. (1) of [54] would have exactly the same structure as Eq. (2.1) in this

chapter. However, the solution of his equation cannot be used for our equation due

to di�erent boundary conditions used in our papers.

Among other assumptions used in our analysis we mention that the e�ects of the

interaction between droplets were ignored. This can be justi�ed when the distance

parameter (ratio of the distance between droplets to their diameters) is large (see

[49] for details).

12





we can rewrite Equation (2.12) as

R2
d(t)F

0

t = �F
00

�� + �R
0

d(t)Rd(t)F
0

� : (2.16)

Equation (2.16) is identical to the one studied in [109], where the distribution of

temperature in the melting region was considered (plane problem).

Equation (2.16) is to be solved att 2 [0; te] (or t 2 [t0; t0 + � t]) and 0 � � � 1.

Initial and boundary conditions for this equation can be presented as:

F j t=0 = Rd0�T 0(�R d0); 0 � � � 1;

F j � =0 = 0;
�
F

0

� + ~H (t)F
� �

�
�
� =1

= ~� (t); 0 � t � te (or t 2 [t0; t0 + � t]);

where ~H (t) = H (t)Rd(t), ~� (t) = M (t)R2
d(t).

Following Kartashov [105], we introduce the new unknown functionW(t; � ) via

the relation:

F (t; � ) =
1

q
Rd(t)

exp

"

�
R

0

d(t)Rd(t)
4�

� 2

#

W(t; � ): (2.17)

From Equation (2.17) we obtain the following expressions for the derivatives:

F
0

t =

(

�

"
1
2

R� 3=2
d (t)R

0

d(t) + R� 1=2
d (t)

 
(R

0

d(t))2 + Rd(t)R
00

d(t)
4�

� 2

!#

W(t; � )

+ R� 1=2
d (t)W

0

t (t; � )
o

exp

"

�
R

0

d(t)Rd(t)
4�

� 2

#

;

F
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In the case of non-zero d2Rd=dt2 and P(R), Eq. (2.18) would need to be replaced

by the following equation (cf. Equation (8.149) in [105]):

R2
d(t)W

0

t (t; � ) = �W
00

�� (t; � ) +

"
� 2

4�

#

R3
d
d2Rd

dt2
W(t; � ) +

R2
dR

qK (�; t )
P(R); (2.19)

where

qK (�; t ) =
1

q
Rd(t)

exp

"

�
R

0

d(t)Rd(t)
4�

� 2

#

:

Equation (2.19) reduces to Equation (2.18) in the limit when d2Rd=dt2 = 0 and

P(R) = 0.

Equation (2.18) is to be solved subject to initial and boundary conditions:

W(t; � )j t=0 = W0(�

=#

:

Equation1 (2.19) reduces to Equation (2.18) in





The solution to Equation (2.28) gives a set of positive eigenvalues� n numbered

in ascending order (n = 1; 2; :::). If h0 = 0, then � n = � (n � 1
2). Assuming that

B = 1, expressions for eigenfunctionsvn (� ) can be written as:

vn (� ) = sin � n � (n = 1; 2; :::): (2.29)

The solution � = 0 is excluded as it leads to a trivial solutionvn (� ) = 0.

The value of B is implicitly accounted for by the coe�cients � n (t) in Series

(2.25). The functions vn (� ) form a full set of eigenfunction functions which are

orthogonal for � 2 [0; 1]. The orthogonality of functions vn (� ) follows from the

relation:
Z 1

0
vn (� )vm (� )d� = � nm jj vn jj 2; (2.30)

where:

� nm =



this case one can show that [15]:

jqn j <
const

� 2
n

: (2.34)

Remembering Equations (2.25) and (2.32), Equation (2.24) can be rewritten as:

1X

n=1

 

R2
d(t)

d� n (t)
dt

+ � n (t)�� 2
n

!

vn (� ) =
1X

n=1

 

f nR2
d(t)

d� 0(t)
dt

!

vn (� ): (2.35)

Both sides of Equation (2.35) are Fourier series with respect to functionsvn (� ). Two

Fourier series are equal if, and only if, their coe�cients are equal. This implies that:

R2
d(t)

d� n (t)
dt

+ � n (t)�� 2
n = f nR2

d(t)
d� 0(t)

dt
: (2.36)

Equation (2.36) is to be solved subject to the initial condition:

� n (0) = qn + � 0(0)f n : (2.37)

To simplify the notation, hence-forward it is assumed thatt0 = 0.

The general solution to the homogeneous equation:

R2
d(t)

d� n (t)
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#

d�

)

: (2.42)

Remembering Equations (2.40) and (2.41), the solution to Equation (2.36) can

be presented as:

� n (t) = � n (0) exp

"
�� 2

n

�R 2
d0

� 1
1 + �t

� 1
� #

+ f n
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�R 2
d0

� 1
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d�: (2.43)

Remembering (2.42) and (2.37) we can write an alternative formula for �n (t):

� n (t) = qn exp

"

�
�� 2

n t
Rd0Rd(t)

#

+ f n � 0(t)

� f n �� 2
n
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� 0(� )
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d(� )
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"
�� 2

n

�R d0

 
1

Rd(t)
�

1
Rd(� )

!#

d�: (2.44)

Note that � n (t



where � n are given by Equations (2.43) or (2.44).

Note that strictly speaking Equation (2.45) is an implicit function of droplet tem-

perature since� depends on droplet surface temperatureTs ) see Fig. 2.2). Hence,

the iteration process would be required. However, as follows from our calculations

(see Figs. 2.2 and 2.4-2.6), except at the very �nal stage of droplet evaporation, for

su�ciently small time steps, the value of Ts can be taken equal to the one obtained

at the end of the previous time step. This allows us to consider Equation (2.45) as

an explicit formula for T(R).

2.3.3 Analysis of the general case

Let us now relax our assumption thatH0(t) � h0 =const> � 1 and assume that:

H0(t) = h0 + h1(t); (2.46)

whereh0 =const> � 1. Note that many of the following equations would be greatly

simpli�ed in the case whenh0 = 0. In view of (2.46) we can rewrite the boundary

condition at � = 1 for Equation (2.18) in the form:

h
W

0

� (t; � ) + h0W(t; � )
i �
�
�
� =1

= � 0(t) � h1(t)W(t; 1) � �̂ 0(t): (2.47)

Assuming that �̂ 0(t) is known, we can formally use the previously obtained



G(t; �; � ) = �
1X
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sin(� n � )
� sin(� n )
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d(� ) jj vn jj 2

exp

"
�� 2
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�R d0

 
1

Rd(t)
�

1
Rd(� )

!#

:

Explicit expressions forf n have been used in these formulae. Both functionsV(t; � )

and G(t; �; � ) are assumed to be known.

Remembering (2.47), we can rewrite Equation (2.49) as:

W(t; � ) = V(t; � ) �
Z t

0
[� 0(� ) � h1(� )W(�; 1)] G(t; �; � )d�: (2.50)

This is an integral representation for a solution to Problem (2.18){(2.22) for time

dependentH0(t) given by Equation (2.46). For� = 1, integral representation (2.50)

reduces to the Volterra integral equation of the second kind for functionW(t; 1):

W(t; 1) = V(t; 1) �
Z t

0
[� 0(� ) � h1(� )W(



Once the solution to this equation has been found we can substitute it into integral

representation (2.50) and �nd the required solution to the initial and boundary value

problem (2.18) { (2.22). The required distribution ofT is found to be:

T(t; R) =
1

R
q

Rd(t)
exp

"

�
R

0

d(t)R2

4�R d(t)

#

W(t; R=Rd(t)) : (2.56)

In the case whenh1(t) = 0 and �t � 1 this solution reduces to that given by

Equation (16) of [15]. Note that in the case ofh0 = 0 we have � n = � (n � (1=2))

and jjvn jj 2 = 1=2 in all equations.

2.4 Analysis of the solutions





have performed similar calculations but forTg = 2000 K (not shown). The plots

without evaporation for Rd0 =50 � m in this case coincided with the ones shown in

Fig. 2.2 of [15], obtained using the conventional approach.





Figure 2.4: The plots ofTs versus time (a) andRd versus time (b) for heated and

evaporating droplets using the conventional (dotted), and new (solid) approaches

for Tg = 1000 K and Rd0 = 5 � m.
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Figure 2.5: The same as Fig. 2.4 but forRd0 = 10 � m.
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Figure 2.6: The same as Fig. 2.4 but forRd0 = 50 � m.
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To compare results obtained using di�erent methods dimensionless variables are

used: ~R = Rd
Rd0

; � s = Ts � T0



Figure 2.10: Comparison of~R vs. t obtained using three di�erent methods: the box

scheme (solid); the method developed in this chapter (dotted); and the conventional

method for which R(t) is piecewise constant in time (dashed).

the result obtained, assuming thatR(t) is piecewise constant in time, and the results

taking into account the changes ofR(t) during time steps. The results predicted

by the numerical solution coincides within the accuracy of plotting with the one

predicted by the model described in this chapter (as in the case shown in Fig. 2.9).

It is indicated in [23] that, for given values ofT0 and Tg, the maximum surface

temperature reached is always the same, regardless of the initial droplet radius. Note

that this maximal temperature (wet-bulb temperature) is asymptotically approached

only in the case when the contribution of thermal radiation is ignored; when this

contribution is taken into account, the droplet temperature reaches its maximal

temperature, which is greater than the wet-bulb temperature, and then decreases,

approaching the wet-bulb temperature from above [44]. Fortunately, for the case of
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3.2 Solution for the case of arbitrary Rd(t) but

Td0(R) = const

The analysis of this Chapter is based on the assumption thatTd0(R) = Td0 =const.

In this case we can introduce the new variablev = u � RTd0 and rearrange Equation

(2.12) as:
@v
@t

= �
@2v
@R2

(3.1)

for t 2 (0; te) and R 2 (0; Rd(t)) with the boundary conditions
 

@v
@R

+ H (t)v

! �
�
�
�
�
R= Rd (t )

= � 0(t); (3.2)

vjR=0 = 0 (3.3)

for t 2 (0; te) and the initial condition

vj t=0 = 0 ( 11I13739(()1( 11I13w)-206G
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Note that G1(t; R = 0) = 0.

Function U(t; R) has the following properties [105, 130]:

1) It satis�es Equation (3.1) for 0 < t < t e and 0< R < 1 ;

2) It satis�es the boundary Condition (3.3) for 0< t < t e;

3) It satis�es the initial condition

U(t; R)j t=+0 =

8
><

>:

RTd0(R) when 0� R � Re�

0 when R > R e� :
(3.15)

The latter relation follows from the property of the delta-function:

lim
� delta !1

� deltap
�

exp(� � 2
delta x2) = � (x): (3.16)

We look for the solution to Equation (2.12) in the form:

u(t; R) = U(t; R) + v(t; R): (3.17)

Having substituted Equation (3.17) into Equation (2.12) and boundary and initial

conditions (2.13) { (2.15), we obtain problem (3.1) { (3.4) forv(t; R) in which
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Hence, we obtain an explicit expression for� 0(t) in the form:
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In the limit t ! 0+ the expression for� 0(t) is simpli�ed to (see Appendix 5):

� 0(0) = �
�

(�T do(� ))
0

�

�
�
�
� = Rd0

+ H (0)Rd0Td0(Rd0)
�

+ � (0): (3.22)

Combining Equations (3.5) and (3.17) we can present the �nal solution to our

problem in the form:

T(t; R) =
1
R

"

U(





Figure 3.1: The plots ofTs versus time (a) andRd versus time (b) using the

conventional model (thick solid), integral model based on Equation (3.11) (dashed)

and linear model (thin solid) for a stationary n-dodecane (M f = 170 kg/kmole)

droplet with an initial radius 5 � m, evaporating in ambient air at a pressure of

p = 30 atm = 3000 kPa and temperature 1000 K.
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and linear solution (2.45) practically coincide, which suggests that both approaches

are correct and valid. Both these solutions predict lower droplet temperatures and

longer evaporation times in agreement with the results reported in previous Chapter.

Note that deviations between the predictions of the integral and linear solutions

were observed in the immediate vicinity of the time when the droplet completely

evaporates.

There were obvious numerical problems when we approached this time due to the

fact that the time derivative of Rd becomes in�nitely large. In practice the extrapo-

lation, based on the assumption that the second derivative ofRd(t) is constant, was

used for these times. This leads to small deviations between the predicted evapo-

ration times. In the case shown in Fig. 3.1, the evaporation times predicted by the

conventional model, linear solution, and integral solution were 0.595 ms, 0.622 ms

and 0.628 ms respectively. That means that the di�erence between the evaporation

times predicted by the linear and integral solutions was less than 1% and can be

safely ignored in most practical applications (this error can be reduced further if

required). The same comment applies to other cases considered below.

The e�ect of the choice of the number of iterations on the prediction of the in-

tegral solution is illustrated in Fig. 3.2 for the same case as shown in Fig. 3.1. This

e�ect is shown only for the times when the deviation between the results predicted

by the linear and integral solutions is maximal. For the �rst iteration, the time

evolution of droplet radius is the same as predicted by the conventional model. The

deviation of the corresponding droplet temperatures predicted by the integral and

linear solutions appears to be quite noticeable. For the �fth iteration the droplet

surface temperatures predicted by the integral and linear solutions practically coin-

cide up to t � 0:45 ms. The corresponding plots ofRd(t), predicted by the integral

solution, turned out to be closer to those predicted by the linear solution than those

predicted by the conventional model. The closeness between the plots predicted by

the linear and integral solutions improved as the number of iterations increased. Ho-

wever, even for the 15th iteration the deviation between the results remains visible,

although not important for practical applications (cf. Fig. 3.1). For higher itera-

tions the results are practically indistinguishable from those predicted by the 15th

iteration. Interestingly, odd iterations predicted smallerRd(t) and even iterations

43



Figure 3.2: The same as Fig. 3.1 but for di�erent numbers of iterations in the

integral solution.

predicted larger Rd(t) compared with those predicted by the linear solution. At

the qualitative level this could be related to the fact that a faster evaporation rate,

assumed for the �rst iteration (conventional model), leads to a lower droplet surface

temperature. At the second iteration, this lower droplet surface temperature leads

to a slower evaporation rate etc.

As to the computational e�ciency of the new integral model, we note that for a



Figure 3.3: The same as Fig. 3.1 but for a droplet with initial radius 50� m.

computational uid dynamics (CFD) codes.

The results, similar to those shown in Fig. 3.1, but for droplets with initial radii

50 and 100� m are shown in Figs. 3.3 and 3.4 respectively. As can be seen from these



Figure 3.4: The same as Figs. 3.1 and 3.3 but for a droplet with initial radius 100

� m.
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Figure 3.6: The same as Figs. 3.1 and 3.5 but for an ambient gas temperature equal

to 1200 K.
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Figure 3.7: The plots ofT versus� = R=Rd for a stationary n-dodecane (M f = 170

kg/kmole) droplet with initial radius 5 � m, evaporating in ambient airting



Figure 3.8: The same as Fig. 3.7 but for the general solution (Equation (3.23)

applied to the case when the initial distribution of temperature inside the droplet is

given by Equation (3.24)).

distribution of droplet temperature was approximated as

Td0(R) = 300 + 10(R=Rd0)2 = 300 + 10(� )2; (3.24)

and the analysis was based on Equation (3.23).

Comparing the plots referring to both cases, shown in Fig. 3.8, one can see that

these plots visibly converge with time. This can be related to the fact that increased

droplet surface temperature in the general case leads to decreased convective heating

of droplets. Hence the droplet surface temperature increases more slowly in the

general case than in the case of constant initial temperature inside droplets.

We appreciate that the errors associated with the conventional assumption that

the droplet radii remain constant during the time step can be comparable with or

even larger than those associated with other e�ects, including uncertainties in gas

temperature measurements, convection heat transfer coe�cient approximations and

e�ect of interactions between droplets in realistic sprays. The importance of the

latter e�ect is discussed in [14, 38], but its analysis lies beyond the scope of this

Chapter.
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3.6 Conclusions of Chapter 3

Two new solutions to the heat conduction equation, describing transient heating of

an evaporating droplet, are suggested, assuming that the time evolution of droplet

radius Rd(t) is known. The initial droplet temperature is assumed to be constant

or allowed to change with the distance from the droplet centre. The results turned

out to be the simplest in the �rst case and the main focus of our analysis is upon

these. SinceRd(t) depends on the time evolution of the droplet temperature, an

iterative process is required. Firstly, the time evolution ofRd(t) is obtained using

the conventional approach, when it remains constant during the time step, but

changes from one time step to another. The droplet surface temperature in this case

is obtained from the analytical solution of the heat conduction equation inside the

droplet. It is assumed that this droplet is heated by convection from the ambient

gas, and its radius remains constant during the time step. Then these values of

Rd(t) are used in the new solutions to obtain updated values of time evolution of

the distribution of temperatures inside the droplet and on its surface. These new

values of droplet temperature are used to update the functionRd(t). This process

continues until convergence is achieved, which typically takes place after about 15

iterations. The results of the calculations of droplet surface temperature, using this

approach, are compared with the results obtained using the previously suggested

approach when the droplet radius was assumed to be a linear function of time during

individual time steps for typical Diesel engine-like conditions. For su�ciently small

time steps the time evolutions of droplet surface temperatures and radii, predicted

by both approaches coincide. This suggests that both approaches are correct and

valid. Similarly to the case when droplet radius is assumed to be a linear function of

time during the time step, the new solution predicts lower droplet temperatures and

slower evaporation when the e�ects of the reduction ofRd are taken into account.

It is shown that in the case of constant droplet initial temperature, models both

taking and not taking into account the changes in initial droplet temperature with

the distance from the droplet centre, predict the same results. This suggests that

both models are likely to be correct. It is shown that the temperatures predicted

by the models based on the assumption of constant initial droplet temperature, and

the one taking into account the increase in this temperature with the distance from
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the droplet centre, tend to converge with time.
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and the initial condition Yli (t = 0) = Yli 0(R), where Ylis = Ylis (t) are liquid compo-

nents' mass fractions at the droplet's surface,



The latter velocity was calculated as [44]:

Us =
1



by correcting the expression for Shiso (see [38, 49] for details). This e�ect is not

taken into account in our analysis.

Note that Equation (4.10) is valid for arbitrary Lewes numbers, while the equa-

tion for _md used in Chapters 2 and 3 is valid only for Lewes numbers equal to

1.



These allow us to rewrite Equation (4.1), the corresponding initial condition and

boundary condition (4.2) as:

R2
d(t)W

0

t (t; � ) = D lW
00

�� (t; � ); (4.15)

wheret � 0,

W(t; � )j t=0 = W0(� ) � R3=2
d0 �Y li 0(�R d0) exp
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d(0)Rd0

4D l
� 2

#

; (4.16)

W(t; � )j � =0 = 0; (4.17)
h
W

0

� (t; � ) + H0(t)W(t; � )
i �
�
�
� =1

= � 0(t) � �
� m � i (Rd(t))5=2

D l
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"
R

0

d(t)Rd(t)
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; (4.18)

where:

H0(t) = �
� m

D l
Rd(t) � 1 �

R
0

d(t)Rd(t)
2D l

:

Condition (4.17) is an additional boundary condition, which follows from the requi-

rement that Yli (t; R) is a twice continuously di�erentiable function. When deriving

(4.15) we took into account that d2Rd=dt2 = 0.

Further simpli�cation of Equation (4.15) and the corresponding initial and boun-

dary conditions is possible when we apply this equation to a short time step. In this



The initial and boundary conditions for Equation (4.21) can be presented as:

V(t; � )j t=0 = W0(� ) �
� 0(0)
1 + h0

�;

V (t; � )j � =0 = 0;
h
V

0

� (t; � ) + h0V(t; � )
i �
�
�
� =1

= 0:

As in Chapter 2, we look for the solution of Equation (4.21) in the form:

V(t; � ) =
1X

n=0

� n (t)vn (� ); (4.22)

where functionsvn (� ) form the full set of non-trivial solutions to the equation:

d2v
d� 2

+ pv = 0; 0 � � � 1; (4.23)

subject to boundary conditions:

vj � =0 =

 
dv
d�

+ h0v

! �
�
�
�
�
� =1

= 0: (4.24)

For p = 0, Equation (4.23) has no non-trivial solutions, satisfying the boundary

conditions (4.24). Forp � � � 2 < 0, this equation has the solution:

v0(� ) = sinh ( � 0� ) ; (4.25)

where� 0 is the solution to the equation

tanh � = �
�
h0

: (4.26)

The latter equation has three solutions (positive, negative and zero) remembering

that h0 < � 1. We are interested in the positive solution to this equation only [19].

Note that this solution does not exist in the case of the heat conduction equation,

when h0 is greater than� 1 (see Chapter 2).

For p � � 2 > 0, Equation (4.23) has the solutions:

vn (� ) = sin ( � n � ) (4.27)

for n � 1, where� n are the solutions to the equation

tan � = �
�
h0

: (4.28)

As in the casep < 0 we disregard the solutions to this equation corresponding to

zero and negative� . A countable set of positive solutions to this equation (positive

eigenvalues)� n are arranged in ascending order:

0 < � 1 < � 2 < � 3 < ::::
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It can be shown that functionsvn (� ), n � 0 are orthogonal for 0� � � 1 (see

Chapter 2).

The completeness of the set of functionsvn (� ) for n � 0 has been tested. Namely,

we considered di�erent functions not belonging to this set, and found that Fourier

expansions of these functions on the set off vn (� )g1
n=0 coincide with the functions

themselves. If the set of functions is not complete, then a Fourier expansion of



The general solution to the homogeneous equation:

R2
d(t)

d� n (t)
dt

+ ( � 1)� n; 0 � n (t)D l � 2
n = 0 (4.35)

can be presented as:

ln (� n (t)=� n (0)) = � (� 1)� n; 0 D l � 2
n

Z t

0

dt
R2

d(t)
: (4.36)

Assuming that Rd(t) is a linear function oft given by Equation (2.8), Solution (4.36)

can be presented in a more explicit form:

� n (t) = � n (0) exp

"
(� 1)� n; 0 D l � 2

n

�R 2
d0

� 1
1 + �t

� 1
� #

: (4.37)

One can see that the following function:

� n



Remembering that Solution (4.41) is applied to a very short time step, changes

of � 0(� ) in the integrand before the exponential term can be ignored. This allows

us to simplify (4.41) to (see Appendix 6):

� n (t) = [ qn + f n � 0(0)] exp

"

� (� 1)� n; 0
D l � 2

n t
Rd0Rd(t)

#

+ f n � 0(t) � f n � 0(0): (4.42)

Note that � n (t) in the form (4.40) satis�es Equation (4.33), while � n (t) in the

form (4.42) does not satisfy it. This is related to the fact that Equation (4.33)

was derived under the assumption that Series (4.22), after being substituted into

Equation (4.21), can be di�erentiated term by term (derivative of the series is equal

to the series of derivatives). This assumption is valid when �n (t) is taken in the

form (4.40), but it is not valid when � n (t) is taken in the form (4.42), as:

� 0(t)
d2

d� 2

 1X

n=0

f nvn

!

6= � 0(t)
1X

n=0

f n
d2vn

d� 2

(the series on the right hand side of this formula diverges). Note that Series (4.22)

satis�es Equation (4.21) regardless of whether �n (t) is taken in the form (4.40) or

in the form (4.42).

Remembering (4.30) and (4.42), Equation (4.22) can be rewritten as:

V(t; � ) =
1X

n=0

�� n (t)vn (� ) �
� 0(t)
1 + h0

R
Rd(t)

+
� 0(0)
1 + h0

R
Rd(t)

; (4.43)

where

�� n (t) = [ qn + f n � 0(0)] exp

"

� (� 1)� n; 0
D l � 2

n t
Rd0Rd(t)

#

: (4.44)

The �nal equation for mass fraction inside the droplet can be presented as:

Yli (R) =
1

R
q

Rd(t)
exp

"

�
�R d0R2

4D lRd(t)

# " 1X

n=1

�� n (t) sin

 

� n
R

Rd(t)

!

+

�� 0(t) sinh

 

� 0
R

Rd(t)

!

+
� 0(0)
1 + h0

R
Rd(t)

#

; (4.45)

where �� n are given by Equations (4.44).

Having substituted (4.44) into (4.45) we can rearrange the latter equation for

the short time step to

Yli (R) =
� m � i exp

h
�R d0
4D l

�
Rd0Rd (t )� R2

Rd (t )

�i

� m + �R d0
2

R5=2
d0

R5=2
d (t)

+
1

R
q

Rd(t)
exp

"

�
�R d0R2

4D lRd(t)

#

�

" 1X

n=1

[qn + f n � 0(0)] exp

"

�
D l � 2

n t
Rd0Rd(t)

#

sin

 

� n
R

Rd(t)

!

+
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[q0 + f 0� 0(0)] exp

"
D l � 2

0t
Rd0Rd(t)

#

sinh

 

� 0
R

Rd(t)

!#

: (4.46)

When � = 0 but � m 6= 0 during the time step, Equation (4.46) can be further

simpli�ed to

Yli (R) = � i +
1

R
q

Rd(t)

" 1X

n=1

[qn + f n � 0(0)] exp

"

�
D l � 2

n t
Rd0Rd(t)

#

sin

 

� n
R

Rd(t)

!

+

[q0 + f 0� 0(0)] exp

"
D l � 2

0t
Rd0Rd(t)

#

sinh

 

� 0
R

Rd(t)

!#

: (4.47)

This equation is identical to Equation (13) of [38]. Note that in [38] and [50] the

norm of vn (jjvn jj 2) is dimensional. The ratio ofjjvn jj 2 used in [38, 50] and in this

Chapter is equal toRd0.

Let us now relax our assumption thatH0(t) � h0 =const and assume that:

H0(t) = h0 + h1(t); (4.48)

whereh0 =const< � 1. In view of (4.48) we can rewrite the boundary condition at

� = 1 for Equation (4.15) in the form:

h
W

0

� (t; � ) + h0W(t; � )
i �
�
�
� =1

= � 0(t) � h1(t)W(t; 1) � �̂ 0(t): (4.49)

Assuming that �̂ 0(t) is known, we can formally use the previously obtained

solutions (4.20) and (4.22) to present the solution to Problem (4.15){(4.18) in the

form:

W(t; � ) =
^� 0(t)

1 + h0
� + V(t; � ) =

1X

n=0

vn (� )qn exp

"

� (� 1)� n; 0
D l � 2

n t
Rd0Rd(t)

#

�
1X

n=0

vn (� )( � 1)� n; 0 f nD l � 2
n

�
Z t

0

�̂ 0(� )
R2

d(� )
exp

"

(� 1)� n; 0
D l � 2

n

�R d0

 
1

Rd(t)
�

1
Rd(� )

!#

d�; (4.50)

where Expression (4.41) for �n (t) has been used.

In contrast to the previous case ofH0(t) =const, Equation (4.50) does not give

us an explicit solution forW(t; � ) since ^� 0(t) depends onW(t; 1).

Equation (4.50) can be presented in a more compact form:

W(t; � ) = V(t; � ) �
Z t

0
�̂ 0(� )G(t; �; � )d�; (4.51)
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[50]. Since the main focus of this Chapter is on the analysis of the new physical

e�ects produced by the droplet? moving boundary, the optimisation of the algorithm

is beyond its scope (cf. the analysis of accuracy and CPU e�ciency of the related

algorithm, not taking into account the e�ects of the moving boundary, described in

Section 7 of [50]). Note that the speed of convergence of the algorithm turned out

to be very high. Even calculations based on 100 time steps led to almost the same

results as those based on 105 time steps. In the case of 100 time steps the CPU time

was less than 5 sec. Calculations were performed on a 3 GHz CPU, 2 GB RAM

work station.

4.4 Application to bi-component droplets

4.4.1 E�ect of species di�usion

In this section, Solution (4.47) is applied to the analysis of bi-component droplet

heating and evaporation in an environment close to the one described in [38]. We



Figure 4.1: The plots of ethanol mass fractionYeth versus� = R=Rd, as predicted by

the conventional model (dashed) and the new model, taking into account the e�ect

of the moving boundary (solid), for times 0:001 s, 0:01 s and 0:03 s. We consider an

initial 50% ethanol { 50% acetone mixture and droplets with initial diameter equal

to 142.7� m.

shown in Fig. 4.1. As expected, both models predict the increase ofYeth with

increasing� and time. This is related to higher volatility of acetone in the ethanol/

acetone mixture. As one can see from Fig. 4.1, at times less than 0:001 s the

predictions of the conventional and the new models are practically indistinguishable.

At later times, however, the new model always predicts lower values ofYeth compared

with the conventional model. In fact the e�ect of the moving boundary on the

distribution of species looks stronger than a similar e�ect on the distribution of

temperature inside droplets as reported in Chapter 2.

The plots of Yeth at the droplet surface (Yeth(� = 1)) versus time, predicted by

the conventional model, and the new model, taking into account the e�ect of the

moving boundary, are shown in Fig. 4.2. As one can see from this �gure, both

models predict the increase ofYeth(�



Figure 4.2: The plots ofYeth(� = 1) versus time, as predicted by the conventional

model (dashed) and the new model, taking into account the e�ect of the moving

boundary (solid).

Figure 4.3: The plots of droplet radiusRd versus time, as predicted by the conven-

tional model (dashed) and the new model, taking into account the e�ect of the

moving boundary (solid).
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Figure 4.4: The plots of Spalding mass transfer numberBM versus time, as predicted

by the conventional model (dashed) and the new model, taking into account the

e�ect of the moving boundary (solid).

model, and the new model, taking into account the e�ects of the moving boundary,

are shown in Fig. 4.3. As one can see from this �gure, taking into account the e�ect

of the moving boundary leads to the acceleration of droplet evaporation compared

with the prediction of the conventional model. This e�ect is opposite to the one

reported earlier for the e�ect of the moving boundary on the thermal conductivity

inside droplets. In the latter case, the e�ect of the moving boundary led to slowing

down of droplet evaporation. The physical background to the e�ect shown in Fig.

4.3 is that the new model predicts higher mass fraction of acetone at the surface of

the droplet, as shown in Fig. 4.2, which evaporates faster than ethanol.

Note that for mono-component droplets at �xed temperature we would expect

that the d2� law should be valid. This is obviously not the case shown in Fig. 4.3.

The reason for this is that the evaporation of multi-component droplets leads to

changes in the Spalding mass transfer numberBM due to the changes in vapour

composition near the droplet's surface. The plots ofBM versus time, predicted by

the conventional model, and the new model, taking into account the e�ects of the

moving boundary, are shown in Fig. 4.4. As can be seen from this �gure, both models

predict the decrease inBM with time except at the �nal stage of droplet evaporation,

when the droplet becomes mono-component, consisting only of ethanol. The new

model predicts largerBM compared with the conventional model. Note that except
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shown to be close to a linear function. The relevant approximations of the experi-

mental results are summarised in Table 4.1 (reproduced from [38]).

Substance Droplet temp: Diameter Gas temp: Dist: parameter

100% acetone 35:1� C 143:4� m 21:5� C 7:7

100% ethanol 38:0� C 140:8� m 22:0� C 7:1

25% ethanol + 75% acetone 32:5� C 133:8� m 21:1� C 8:7

50% ethanol + 50% acetone 37:5� C 142:7� m 20:8� C 7:53

75% ethanol + 25% acetone 38:6� C 137:1� m 21:6� C 7:53

Table 4.2: The measured initial values of droplet temperature, diameter, ambient

gas temperature and distance parameter for the same cases as in Table 4.1.

The measured initial values of droplet temperature, diameter, ambient gas tem-

perature and distance parameterC (ratio of the distance between droplets to their

diameters) for the same cases as in Table 4.1 are shown in Table 4.2. Gas tempe-

rature was constant during the measurements. The changes inC from the previous

to the current time step were taken into account based on the following equation:

Cnew = Cold
Udrop ; new

Udrop ; old

Rd; old

Rd; new
; (4.57)

where subscriptsnew and old refer to the values of variables at the previous time step

and one time step behind respectively. In this case the values ofRd; old and Rd; new

are known at the current time step.

The plots of time evolutions of the temperatures at the centre and the surface

of the droplets and the average droplet temperatures, predicted by the models not

taking into account the e�ect of the moving boundary and taking into account

this e�ect for both temperature and species di�usion for the 25% ethanol { 75%

acetone and 50% ethanol { 50% acetone mixture droplets, are shown in Fig. 4.5.

As can be seen from this �gure, the e�ect of the moving boundary on the predicted

temperatures can be safely ignored in the analysis of experimental data described

earlier. The same conclusion can be drawn for the case of the 75% ethanol { 25%

acetone mixture droplets (�gure is not shown).
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Figure 4.5: The time evolution of droplet surface, average and centre temperatures

(Ts, Tav and Tc), predicted by the one-way Solution A for the non-ideal model, taking

and not taking into account the e�ects of the moving boundary during individual

time steps (moving and stationary boundaries) on the solutions to both heat transfer

and species di�usion equations for the 25% ethanol { 75% acetone mixture droplets

with the values of the initial parameters, droplet velocity and gas temperature given

in Tables 4.1 and 4.2 (a); the same as (a) but for the 50% ethanol { 50% acetone

mixture droplets (b).
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Figure 4.6: The time evolution of droplet surface temperatures (Ts) and radius (Rd),

predicted by the one-way Solution A for the non-ideal model, taking and not taking

into account the e�ects of the moving boundary during individual time steps on

the solutions to the heat transfer equation only, species di�usion equation only and

both heat transfer and species di�usion equations for the 50% ethanol { 50% acetone

mixture droplets with the values of the initial parameters, and gas temperature given

in Table 4.2, assuming that the droplet velocity is constant and equal to 12.71 m/s.

In Fig. 4.5 a hypothetical case is shown when the 50% ethanol { 50% acetone

mixture droplets are cooled down or heated and evaporated until complete evapora-

tion takes place. Both plots for the droplet surface temperature and droplet radius

are shown. The same values as shown in Table 4.2 for the initial droplet tempera-

ture, diameter, distance parameter and gas temperature are used, but in contrast to

the case shown in Table 4.1, it is assumed that the droplet velocity remains constant

and equal to 12.71 m/s. The cases of the stationary boundary during individual time

steps, the cases when the e�ects of the moving boundary are taken into account for

the heat transfer and species di�usion equations separately during individual time

steps, and the case when these e�ects are taken into account simultaneously for heat

transfer and species di�usion are shown.

As can be seen from this �gure, the plots taking into account the e�ects of

73



the moving boundary on the heat transfer equation only, and ignoring this e�ect

altogether practically coincide. That means that this e�ect can be safely ignored

for this case. Also, the plots taking into account the e�ects of the moving boundary

on the solution to the species di�usion equation, and taking it into account for both

solutions to the heat transfer and species di�usion equations practically coincide, but

the di�erence between both these curves and the ones ignoring this e�ect altogether

can be clearly seen after about 0.1 s. The e�ect of the moving boundary is a reduction

of the predicted droplet surface temperature between about 0.1 to 0.6 s. During this

period the droplet surface temperature is below the ambient gas temperature. Hence

the reduction of the droplet surface temperature is expected to increase the heat

ux from the ambient gas to the droplets, leading to the acceleration of droplet

evaporation. This agrees with the predicted time evolution of the droplet radius,

taking and not taking into account the e�ect of the moving boundary, shown in Fig.

4.6.

In Fig. 4.7 the case similar to the one shown in Fig. 4.6, but for gas temperature

equal to 1000 K, is shown. In this case, droplet surface temperature increases during

the whole period of droplet heating and evaporation, in contrast to the case shown

in Fig. 4.6. As one can see from Fig. 4.7, the plots taking into account the e�ects

of the moving boundary on the solution to the heat transfer equation, and ignoring

this e�ect altogether practically coincide, as in the case shown in Fig. 4.7. Also,

similarly to the case shown in Fig. 4.6, the plots taking into account the e�ects of

the moving boundary on the solution to the species di�usion equations, and taking

it into account for both heat transfer and species di�usion equations practically

coincide, but the di�erence between both these curves and the ones ignoring this

e�ect altogether can be clearly seen after about 5 ms. This di�erence between the

plots is much more visible than in the case shown in Fig. 4.6. As in the case shown

in Fig. 4.6, the e�ect of the moving boundary is to reduce the predicted droplet

surface temperature leading to the increase of the heat ux from the ambient gas to

the droplets and acceleration of droplet evaporation. This agrees with the predicted

time evolution of droplet radius, taking and not taking into account the e�ect of the

moving boundary, shown in Fig. 4.7.

The plots of time evolution of the surface mass fraction of ethanolYl;s;eth for the
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Figure 4.7: The same as Fig. 4.6 but for the gas temperature equal to 1000 K.

same case as shown in Fig. 4.7, are shown in Fig. 4.8. Similarly to the case shown

in Fig. 4.7, the main e�ect of the moving boundary on the solution to the species

di�usion equation is its inuence on the values ofYl;s;eth . This e�ect leads to visible

reductions of the values ofYl;s;eth until the complete evaporation of the droplet takes

place.

4.5 Conclusions of Chapter 4

Two new solutions to the equation, describing the di�usion of species during multi-

component droplet evaporation, are suggested. The �rst solution is the explicit

analytical solution to this equation, while the second one reduces the solution of

the di�erential transient species di�usion equation to the solution of the Volterra

integral equation of the second kind. Both solutions take into account the e�ect of



Figure 4.8: The same as Fig. 4.7 but for the mass fraction of ethanol at the surface

of the droplet.

Chapter 2, which took into account the e�ect of the moving boundary due to droplet

evaporation on the distribution of temperature inside the droplet.

The analytical solution has been incorporated into a zero dimensional CFD code

and applied to the analysis of bi-component droplet heating and evaporation. The

case of initial 50% ethanol { 50% acetone mixture and droplets with initial diameter

equal to 142.7� m, as in our earlier paper [38], has been considered. E�ects of

droplets on gas have been ignored at this stage and droplet velocity has been assumed

to be constant and equal to 12.71 m/s. To separate the e�ect of the moving boundary

on the species di�usion equation from similar e�ects on the heat conduction equation

inside droplets, described in previous two Chapters, a rather arti�cial assumption

that the droplet temperature is homogeneous and �xed has been made.

It has been pointed out that the moving boundary slows down the increase in

the mass fraction of ethanol (the less volatile substance in the mixture) during the

evaporation process and leads to the acceleration of droplet evaporation.

It is pointed out that for the conditions of the experiment described briey earlier,



species di�usion equations, are very close. The deviation between the predictions

of these models can be ignored in this case. At the same time, the di�erence in the

predictions of these models needs to be taken into account when the whole period of

droplet evaporation up to the complete evaporation of droplets is considered. The

e�ect of the moving boundary is shown to be much stronger for the solution to

the species di�usion equation than for the solution to the heat conduction equation

inside droplets.
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Chapter 5

Transient heating of a

semitransparent spherical body

immersed into a gas with

inhomogeneous temperature

distribution

5.1 Introduction of Chapter 5

The main objective of this Chapter is to generalise the model described in [52] to the

case when the initial gas temperature is not homogeneous in the vicinity of droplets.



Figure 5.1: A schematic presentation of a spherical body of radiusRb immersed in

the center of a gaseous sphere of radiusRg.

5.2 Basic equations and assumptions

As in [52], let us assume that a spherical body of radiusRb and initial temperature

Tb0(R) is immersed in the center of a gaseous sphere of radiusRg at temperature

Tg0(R), as schematically shown in Fig. 5.1. The outer surface temperature of the

gaseous sphere remains constant and equal toTg0(Rg). Rg is greater than Rb but

�nite.

The variation of the temperatures in the gas-body domain is described by the

heat conduction equation in the form [105, 106]:

@T
@t

= �

 
@2T
@R2

+
2
R

@T
@R

!

+ P(t; R); (5.1)

where

� =

8
><

>:

� b = kb=(cb� b) when R � Rb

� g = kg=(cpg� g) when Rb < R � Rg;
(5.2)

T(Rg) = Tg0(Rg) =const.

Equation (5.1) is identical to Equation (2.1). In contrast to Equation (2.1),

however,� in Equation (5.1) is not constant and the latter Equation refers to both
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liquid and gas. Equation (5.1) is the same as used in [52] except thatTg0 is not

constant but depends onR in the rangeRb < R � Rg. The model for the radiation

term P(t; R) is the same as used in [52].

As in [52], Equation (5.1) needs to be solved subject to initial and boundary

conditions:

Tj t=0 =

8
><

>:

Tb0(R) when R � Rb

Tg0(R) when Rb < R � Rg;
(5.3)

TjR= R �
b

= TjR= R+
b

; kb
@T
@R

�
�
�
�
�
R= R �

b

= kg
@T
@R

�
�
�
�
�
R= R+

b

; TjR= Rg
= Tg0(Rg): (5.4)

The physical meaning of the value ofRg � Rb can be interpreted in terms of the

so called `�lm' theory [44]. The key concept of this theory is thermal �lm thickness

� T , the expression for which is derived from the requirement that the rate of a

purely molecular transport by thermal conduction through the �lm must be equal

to the actual intensity of the convective heat transfer between the body surface and

the external ow. For the case of heat conduction at the surface of a sphere this

requirement can be written as [131]:

q
00

s =
kg� T

Rb � R2
b

Rb+ � T 0

= h� T; (5.5)

where q
00

s = j _qsj=(4�R 2
b) is the value of the heat ux at the surface of the droplet,

� T = Tg � Ts, index 0



The introduction of non-zero Re a�ects our earlier assumption about the sphe-

rical symmetry of the problem andh = kg=Rb. This can be overcome if we replace

kg by

kg; e� = kg



jj vn jj 2 =
cb� bRb

2 sin2(� nabRb)
+

cpg� g(Rg � Rb)
2 sin2(� nag(Rb � Rg))

�
kb � kg

2Rb� 2
n

;

pn (t) =
cb� b

jj vn jj 2

Z Rb

0
RP(t; R)vn (R)dR:

A countable set of positive eigenvalues� n is found from the solution to the equation:

q
kbcb� b cot(�a bRb) �

q
kgcpg� g cot(�a g(Rb � Rg)) =

kb � kg

Rb�
: (5.11)

These are arranged in ascending order 0< � 1 < � 2 < :::: . ab =
q

cb� b
kb

, ag =
q

cpg � g

kg
.

Having introduced new dimensionless variables:

~T =
T(R; t)
Tg0(Rg)

; ~Tb =
Tb0(R)
Tg0(Rg)

; ~Tg =
Tg0(R)
Tg0(Rg)

; r =
R
Rb

; rg =
Rg

Rb
;

and ignoring the contribution of thermal radiation, Equation (5.9) can be simpli�ed

to

~T = 1 +
Rb

r

1X

n=1

"

exp
�
� � 2

n t
� 1

jjvn jj 2

� Z 1

0
(� (1 � ~Tb)rvn (Rbr )cb� bdr

+
Z r g

1
(� (1 � ~Tg)rvn (Rbr )cpg� gdr

��

vn (Rbr ); (5.12)

If Tg0(R) = Tg0(Rg) =const and Tb0 does not depend onR then Equation (5.9)

can be simpli�ed to

T(R; t) = Tg0 +
1
R

1X

n=1

"

exp
�
� � 2

n t
� (Tg0 � Tb0)

p
kbcb� b

� n jj vn jj 2

�

Rb cot(� nabRb) �
1

� nab

�

+
Z t

0
exp

�
� � 2

n (t � � )
�

pn (� )d�
�

vn (R): (5.13)

This solution was studied in detail in the previous paper [52].

5.4 Analysis

Let us consider typical values of parameters for the case when Diesel fuel droplets

with an initial temperature of 300 K are injected into a gas at temperature 900 K

and pressure 30 atm (situation typical for Diesel engines [42]):

� b = 600 kg=m3 kb = 0:145 W=(mK) cb = 2830 J=(kgK)

� g = 23:8 kg=m3 kg = 0:061 W=(mK) cpg = 1120 J=(kgK) :
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This leads us to the following estimates of thermal di�usivities of the body and gas

as de�ned by Equation (5.2):

� b = 8:54� 10� 8 m2=s; � g = 2:29� 10� 6 m2=s:

Note that we took gas temperature slightly higher than the one used in [52],

where it was assumed thatTg0(Rg) = 800 K. The values of transport coe�cients for

gas were taken to be the same as in [42, 52]. The di�erence of the values of these

coe�cients for these two temperatures were ignored as in [52].

We assume that the droplets can be treated as a body the temperature of which

is initially homogeneous, whileTg0(Rg) = 900 K and Rb = 10 � m. Pr is assumed to

be equal to 0.7 and two values of Re are considered: 1 and 5. Remembering (5.6),

this leads to the following values ofRg:

Rg1 = 3:301Rb and Rg2 = 11:337Rb:

Two cases of the initial distribution of gas temperature in the rangeRb < R � Rg

are considered. Firstly, we assume thatTg0(R) satis�es Equation (5.8), which leads

to the following expression:

Tg0(R) = Tb0 + [ Tg0(Rg) � Tb0]
1

Rb
� 1

R
1

Rb
� 1

Rg

: (5.14)

Secondly we assume that

Tg0(R) = Tg0(Rg): (5.15)

The latter case is identical to the one considered in [52].

The analysis of the e�ects of thermal radiation would lead to the results identical

to the ones reported in [52]. This will not be considered in this work.

The analysis will be focused on the dimensionless time (Fourier number), distance

and temperature de�ned as:

Fo = t� g=R2
b; r = R=Rb; T̂(s) = ( Tg0(Rg) � T(s)(R; t))=(Tg0(Rg) � Tb0):



Figure 5.2: The plots ofT̂ � (Tg0(Rg) � T(R; t))=(Tg0(Rg) � Tb0) versusr = R=Rb

for rg � Rg=Rb = 3:301 and four Fo (indicated near the curves). Solid curves refer

to the initial distribution (5.15), while dashed curves refer to the initial distribution

(5.14). The thickness of the curves is inversely proportionate to Fo.

by Expressions (5.14) and (5.15). As follows from this �gure, for Fo = 0:1 most

of the interior of the body is not a�ected by high gas temperature for both initial

distributions of Tg0(R), but the body temperatures near the surface are a�ected

stronger by gas for distribution (5.15), compared with distribution (5.14). The

di�erence in gas temperatures (



Figure 5.3: The same as Fig. 5.2 but forrg = 11:337.

The plots of T̂s versus Fo forRg = 3:301Rb, Rg = 11:337Rb and both initial

distributions of Tg0(R) are shown in Fig. 5.4. As follows from this �gure, the body

surface is always heated quicker for distribution (5.15) compared with distribution



Figure 5.4: The plots ofT̂s � (Tg0(Rg) � Ts(R; t))=(Tg0(Rg) � Tb0) versus Fo for

rg = 3:301 and distribution (5.15) (solid), rg = 11:337 and distribution (5.15)

(dashed-dotted), rg = 3:301 and distribution (5.14) (thick dashed),rg = 11:337

and distribution (5.14) (thin dashed).

If the Newton's law is valid then � = 1. As shown in [52] for the special case of

a body immersed into a homogeneous gas, this is not valid in the general transient

case.

The plots of � versus Fo for variousrg � Rg=Rb, and both initial distributions

of Tg0(R



Figure 5.5: The plots of�



on the distance from the body surface, if this distance is less thanRg � Rb. The

solution is applied to modelling body heating in conditions close to those observed

in Diesel engines.

It is pointed out that inhomogeneous gas temperature distribution leads to slo-

wing down of body heating compared with the case when the body is immersed

into a homogeneous gas. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature.

The study of the correction of the convective heat transfer coe�cient for the case

of body immersion in gas with homogeneous temperature distribution con�rmed the

results earlier reported in [52]. For small Fo, this correction does not depend on the

size of the gas domain, and reaches about 2.8 at Fo= 0:1. For Fo> 1 this correction



Chapter 6

Conclusions

New solutions to the heat conduction equation, describing transient heating of an

evaporating droplet, are suggested. These solutions take into account the e�ect of

the reduction of the droplet radius due to evaporation, assuming that this radius is

a linear function of time. The latter assumption does not allow us to apply these

solutions to describe the whole process, from the start of evaporation, until the





the distance from the droplet centre, predict the same results. This suggests that

both models are likely to be correct. It is shown that the temperatures predicted

by the models based on the assumption of constant initial droplet temperature, and

the one taking into account the increase in this temperature with the distance from

the droplet centre, tend to converge with time.



the species di�usion equation than for the solution to the heat conduction equation

inside droplets.

The problem of heating of a body immersed into gas with inhomogeneous tempe-

rature distribution is solved analytically assuming that at a certain distanceRg � Rb

from the body gas temperature remains constant. This problem is the generalisation

of the problem solved earlier when gas, into which the body is immersed, is assumed

to be initially homogeneous. This solution is applied to the case when the distribu-

tion of gas temperature is chosen such that heat ux in gas initially does not depend

on the distance from the body surface, if this distance is less thanRg � Rb. The

solution is applied to modelling body heating in conditions close to those observed

in Diesel engines.

It is pointed out that inhomogeneous gas temperature distribution leads to slo-

wing down of body heating compared with the case when the body is immersed

into a homogeneous gas. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature. The study of the correction of the convective heat transfer coe�cient

for the case of body immersion in gas with homogeneous temperature distribution

con�rmed the results earlier reported in [52]. For small Fo, this correction does not

depend on the size of the gas domain, and reaches about 2.8 at Fo= 0:1. For Fo> 1

this correction becomes sensitive to the size of the domain. For large domains it has

been shown to be the same as follows from the earlier model suggested in [67] for an

in�nitely large domain occupied by the gas. The values of this correction to New-
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Appendices

Appendix 1

Convergence of the Series in G1(t; �; � ) and Estimate of G1(t; �; � )

at t � � ! 0

Let us assume that

0 � � � t < t e = � 1=�

and introduce the new function:

f (t; � ) � �
1

�R d0

 
1

Rd(t)
�

1
Rd(� )

!

=
t � �

Rd(t)Rd(� )
: (A11)

In the case of a time step,te needs to be replaced by �t. As it was done earlier, to

simplify the notation it is assumed that t0 (the start of the time step) is equal to

zero. This comment and assumption apply to both Appendices 1 and 2. Note that

f (t; � ) �
t � �
R2

d0
(A12)

since� < 0 and Rd(t) � Rd0.

It follows from (2.31) and the estimate� n > n for n > 1 that jj vn jj 2> 1=4 for

n > 1. Therefore:

jj vn jj 2� c0; n � 1; (A13)

wherec0 = min fjj v1 jj 2; 1=4g is a positive constant.

Condition (A12) allows us to make the following estimate:

exp
h
� �� 2

n f (t; � )
i

� exp

"

� �n 2 t � �
R2

d0

#

; n > 1; (A14)

where we took into account that� n > n for n > 1 (see Equation (17) in [15]).

Using (A14) one can conclude that the series inG1(t; �; � ) converges absolutely and
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uniformly to the continuous function for (t � �; � ) 2 [�; � 1=� ) � [0; 1] for any small

� > 0 since:

exp

"

� �n 2 t � �
R2

d0

#

� exp

"

� �n 2 �
R2

d0

#

; jsin� n � j � 1: (A15)

Indeed, each term withn > 1 in the series inG1(t; �; � ) for ( t � �; � ) 2 [�; � 1=� )� [0; 1]

can be majorized by the corresponding term of the convergent number series

�c � 1
0 exp

 

� �n 2 �
R2

d0

!

:

Now we estimateG1(t; �; � ) for small t � � > 0. Inequalities (A13) and (A14)

allow us to write:

jG1(t; �; � )j � c� 1
0 �

(

1 +
1X

n=2

exp
h
� �n 2f (t; � )

i
)

� c� 1
0 �

(

1 +
1X

n=2

exp
h
� �n 2(t � � )=R2

d0

i
)

� ~G(t � � ): (A16)

The sum
P 1

n=2 exp [� �n 2(t � � )=R2
d0] can be considered as a sum of areas of

polygons of unit width placed under the curve exp [� �y 2(t � � )=R2
d0]. This sum is

less than the area under this curve. Hence,

1X

n=2

exp
h
� �n 2(t � � )=R2

d0

i
<

Z 1

1
exp

h
� �y 2(t � � )=R2

d0

i
dy

<
Z 1

0
exp

h
� �y 2(t � � )=R2

d0

i
dy =

Rd0q
� (t � � )

Z 1

0
exp

h
� z2

i
dz

=
Rd0

p
�

2
q

� (t � � )
(A17)

Having substituted (A17) into (A16) we obtain:

jG1(t; �; � )j � ~G(t � � ) < c0�

2

41 +
Rd0

p
�

2
q

� (t � � )

3

5 < ~c=
p

t � � ; (A18)

t � � 2 (0; t00];

for any small �xed t00 2 (0; � 1=� ). The new constant ~c depends ont00. Inequality

(A18) holds uniformly for � 2 [0; 1].

108



Appendix 2

Numerical solution of Equation (2.51)

Let  (t) � W(t; 1) and rewrite Equation (2.51) as:

 (t) = V(t; 1) �
Z t

0
[� 0(� ) � h1(� ) (� )] G(t; �; 1)d�: (A21)

We look for the solution of Equation (A21) for t 2 [0; t̂], where t̂ is a constant,

t̂ < t e. Let � t = t̂=N and tn = n� t, where N is the total number of time steps,

n = 0; 1; :::::N is the number of the current time step. Note thatt0 = 0 and tN = t̂.

Discretisation of Equation (A21) gives:

 (tn ) = V(tn ; 1) �
nX

j =1

Z t j

t j � 1

[� 0(� ) � h1(� ) (� )] G(tn ; �; 1)d�; (A22)

wheren = 1; :::::N . Note that  (t0) =  (0) = V(0; 1) = W0(1) is a known constant.

The �rst ( n � 1) integrals in this sum can be approximated as:
Z t j

t j � 1

[� 0(� ) � h1(� ) (� )] G(tn ; �; 1)d�

� f � 0(� j ) � h1(� j ) [ (t j ) +  (t j � 1)] =2gG(tn ; � j ; 1)� t; (A23)

where j = 1; 2; ::::; n � 1, � j = t j � 1
2 � t. Approximation (A23) is valid since all

functions in the integrand are continuous and we look for the solution in the class

of continuous functions.

In Approximation (A23) the known functions are taken at� = � j (middle of the

range [t j � 1; t j ]), while the unknown functions are taken as the average of the values

at the end points t j � 1 and t j .

The last term in the sum in Equation (A22) requires special investigation since

the kernel G(tn ; �; 1) in the integrand becomes singular when� ! tn � 0 (see Esti-

mate (A18)). All other functions in this integrand, including the unknown function

 (t), are assumed continuous. Hence, we can write:
Z tn

tn � 1

[� 0(� ) � h1(� ) (� )] G(tn ; �; 1)d�

�

(

� 0(� n ) � h1(� n )
 (tn ) +  (tn� 1)

2

) Z tn

tn � 1

G(tn ; �; 1)d�: (A24)

In view of Series (2.53) we can write:
Z tn

tn � 1

G(tn ; �; 1)d�
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= � 2�
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� 2
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m
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1
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exp

"
�� 2

m

�R d0

 
1

Rd(tn )
�

1
Rd(� )

!#
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= � 2�
1X
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m
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m

1
�� 2

m
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"
�� 2

m

�R d0

 
1

Rd(tn )
�

1
Rd(� )

!# �
�
�
�
�

� = tn

� = tn � 1

= � 2�
1X

m=1

� 2
m
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0 + h0 + � 2

m

1
�� 2

m

(

1 � exp

"
�� 2

m

�R d0

 
1

Rd(tn )
�

1
Rd(tn� 1)

!#)

= � 2
1X

m=1

1
h2

0 + h0 + � 2
m

(

1 � exp

"
� �� 2

m � t
Rd(tn )Rd(tn� 1)

#)

= �
1

1 + h0
+ 2

1X

m=1

1
h2

0 + h0 + � 2
m

exp

"
� �� 2

m � t
Rd(tn )Rd(tn� 1)

#

� gn : (A25)

If h0 = 0 then � m = � (m � (1=



Using the same discretisation byt and � as above, we can present the discretised

form of this representation as:

W(t̂; � ) = V(t̂; � ) �
NX

j =1

Z t j

t j � 1

�̂ 0(� )G(t̂; �; � )d�

= V(t̂; � ) �
N � 1X

j =1

�̂ 0(t j � 1) + �̂ 0(t j )
2

G(t̂; � j ; � )� t �
�̂ 0(tN � 1) + �̂ 0(tN )

2

�
Z tN

tN � 1

G(tN ; �; � )d�: (A29)

Note that tN = t̂. If N = 1 then the sum in Equation (A29) is equal to zero. The

last integral in Equation (A29) is improper and needs to be calculated separately.

Remembering the de�nition of G(t; �; � ), and almost repeating the derivation of

Equation (A25), we can write:

Z tN

tN � 1

G(tN ; �; � )d� = � 2
1X

m=1

h2
0 + � 2

m

h2
0 + h0 + � 2

m

sin� m sin� m �
� 2

m

�

(

1 � exp

"
� �� 2

m � t
Rd(tN )Rd(tN � 1)

#)

= �
�

1 + h0
+ 2

1X

m=1

h2
0 + � 2

m

h2
0 + h0 + � 2

m

sin� m sin� m �
� 2

m
exp

"
� �� 2

m � t
Rd(tN )Rd(tN � 1)

#

:

Having substituted the latter equation into (A29), and remembering the de�ni-

tion of �̂ 0(t j ), we obtain the required value ofW(t̂; � ).

Appendix 3

Numerical solution of the integral Equation (3.10)

Remembering Equations (3.6) and (3.8) we can rewrite Equation (3.10) as:

� (t) +
Z t

0
� (� )

(
1

p
t � �


( t; � ) + ! (t; � )

)

d� = 2� 0(t); (A31)

where:


( t; � ) =
1

p
�

(

�
1

2
p

�
Rd(t) � Rd(� )

t � �
+

p
�H (t)

)

� exp

"

�
(Rd(t) �

(1]TJ626 Tf 19.876 17 Td [(�)]TJ/FTd d [1.9552 T23 7.9701 Tf 0 -7.294 Td [(m9.388.9552 Tf 8.025 -17.534 Td [(320T
q
11]TJ5 -0.162 42 Tf 138.627 0 Td [(�)]TJ01.9552 Tf 5.85 0 0 m 70.998 0 l J/F1 9.96269552 Tf 8.068 1.794 Td [())]TJ/F22 11.95529 0 Td [())]TJ
ET
q
1 0 0 1 315.376 158.867 cm
[]0 d 0 J 0.398 w 0 0 m 70.998 0 l S
Q(0)]TJ/F22 11.9552 Tf 9.977 8.579 T Td 65 [(N)]TJ/F26 7.9701 Tf 7.571 0 Td [(�)]TJ/F4TJ/F18 11.9552 Tf 4.732 1.71[(t)0d [(()]TJ/F22 11.9552 Tf 4.552 0 Td [(t)]TJ/F18 11.9552 Tf 4.228 0 Td [())]27.9701 Tf 7.043 -1.793 T.55BT
8 4.57TJ/F28.528 Td [(
()]TJ/F22 11.9552 Tf 13.007 0 Td [(t;)-167(�)]2Td [(A)]TJ/F18 11.9552 Tf 8.775 0 Td [(31)1)]TJ -408.938 -33.077 Td4d [6Tf 261.654 147.677 Td [(�)]TJ/Q
BT
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BT
1TJ11.91.9552 q1.9552 Tf 7.389 2.958025)]J11622552 Tf 16.365 0 Td [(�)]T410)]2))



� exp

"

�
(Rd(t) + ( Rd(� ))2

4� (t � � )

#

; (A33)

Functions 
( t; � ) and ! (t; � ) are continuous for � 2 [0; t]. Hence, the singularity

1=
p

t � � of the kernel in Equation (A31) is presented in an explicit form.

We look for the solution of Equation (A31) for t 2 [0; t̂], where t̂ � te is an

arbitrary, but �xed positive constant. Let � t = t̂=N and tn = n� t, whereN is the

total number of time steps,n = 0; 1; :::::N is the number of the current time step.

Note that t0 = 0 and tN = t̂. Discretisation of Equation (A31) gives:

� (tn ) +
nX

j =1

Z t j

t j � 1

� (� )

(

( tn ; � )
p

tn � �
+ ! (tn ; � )

)

d� = 2� 0(tn ); (A34)

wheren = 0; 1; :::::N . Note that

� (t0) = � (0) = 2 � 0(0)

is the known constant derived in Appendix 5.

The �rst ( n � 1) terms in the sum in Equation (A34) can be approximated as:
Z t j

t j � 1

� (� )

(

( tn ; � )
p

tn � �
+ ! (tn ; � )

)

d�

�
� (t j ) + � (t j � 1)

2

(

( tn ; � j )p

tn � � j
+ ! (tn ; � j )

)

� t; (A35)

wherej = 1; 2; ::::n� 1; � j = t j � � t
2 . This approximation is valid since all functions in

the integrand are continuous, and we look for the solution in the class of continuous

functions (� (t) should be continuous fort � 0). In this approximation the known

functions are taken at the points� = � j (middle of the time interval [t j � 1; t j ]), while

the unknown function is taken as an arithmetic mean of its values at the timest j � 1

and t j .

The last term in the sum in Equation (A34) has an integrable singularity 1=
p

t � �

when� ! t � 0 (recall that functions 
( t; � ) and ! (t; � ) are continuous for� 2 [0; t]).

This allows us to approximate this term as:
Z tn

tn � 1

� (� )

(

( tn ; � )
p

tn � �
+ ! (tn ; � )

)

d�
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� (tn ) + � (tn� 1)
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=
� (tn=
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where

gn = 
( tn ; � n )
p

� t +
! (tn ; � n )� t

2



latter equation which will enable us to simplify the notation. Let us rewrite this

equation as:

v(R; t̂) =
NX

j =1

Z t j

t j � 1

� (� )G(t̂; �; R )d�; (A41)

where t̂ = tN , tn = n� t, n = 0; 1; 2; ::::N , � t = t̂=N . In all integrals we can

replace� (� ) with the average values over the corresponding time interval (� (t j � 1) +

� (t j ))=2. Moreover, in all integrals, except the last one, we can replaceG(t̂; �; R )

with G(t̂; � j ; R), where � j = ( t j � 1 + t j )=2. As a result, Equation (A41) can be

presented in a more explicit form:

v(R; t̂) =
N � 1X

j =1

� (t j � 1) + � (t j )
2

G(t̂; � j ; R)� t +
� (tN � 1) + � (tN )

2

Z tN

tN � 1

G(t̂; �; R )d�:

(A42)

Firstly we assume that ana priori chosenR is not equal to Rd(t̂). In this case

G(t̂; �; R ), as de�ned by Equation (3.6), approaches 0, when� ! t̂ � 0. Hence the

singularity in the integrand is not present and the last time step can be treated as



Appendix 5

Derivation of the expression for � 0(0)

Having substituted Equation (3.20) into Equation (3.19) and integrating by parts

we obtain:

U
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R(t; R)
�
�
�
R= Rd (t )

=
Z Re�

0
(�T d0(� ))
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:

(A61)

� 0(� ) in the integrand of (4.41) is taken at the beginning of the time step.

Remembering that

d(Rd(� )� 1) = �
R0

d

R2
d(t)

d�

we can rearrange the last term in (A61) to
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(A62)

When deriving (A62) we took into account (2.8).

Having substituted (A62) into (A61), we obtain (4.42).

Appendix 7

Derivation of Formula (5.9)

Introducing a new variable

u = ( T � Tg0(Rg)) R

we can simplify Equation (5.1) and initial and boundary conditions (5.3) { (5.4) to:

@u
@t

= �
@2u
@R2

+ RP(t; R); (A71)

uj t=0 = � T0R (A72)

ujR= R �
b

= ujR= R+
b

; kb

h
Rbu

0

R � u
i �
�
�
R= R �

b

= kg

h
Rbu

0

R � u
i �
�
�
R= R+

b

; ujR= Rg
= 0;

(A73)
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where

T0 � T0(R) =

8
><

>:

Tg0(Rg) � Tb0(R) when R � Rb

Tg0(Rg) � Tg0(R) when Rb < R � Rg;
:

Conditions (A73) need to be amended by the boundary condition atR = 0. Since

T � Tg0 is �nite at R = 0 then ujR=0 = 0:

We look for the solution of Equation (A71) in the form:

u =
1X

n=1

� n (t)vn (R); (A74)

where functionsvn (R) form the full set of non-trivial solutions of the eigenvalue

problem:
d2v
dR2

+ a2� 2v = 0 ( A75)

subject to boundary conditions:
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where

a =
1

p
�

=

8
><

>:

q
cb� b
kb

� ab when R � Rb
q

cpg � g

kg
� ag when Rb < R � Rg:

(A77)

Note that � has dimension 1=
p

time. We look for the solution of Equation (A75)

in the form:

v(R) =

8
><

>:

A sin(�a bR) when R � Rb

B sin(�a g(R � Rg)) when Rb < R � Rg:
(A78)

Function (A78) satis�es boundary conditions (A76) atR = 0. Having substituted

function (A78) into boundary conditions (A76) at R = Rb we obtain:

A sin(�a bRb) = B sin(�a g(Rb � Rg)) ; (A79)

Akb [Rb�a b cos(�a bRb) � �a b �abcos(�a �F18 11.9552 Tf 54285u2 0 Td [(R)]TJm72in(
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and the expression for �n (0) can be further simpli�ed to:
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(A720)

The solution of Equation (A718) subject to the initial condition (A720) can be

written as:

� n (t) = exp
�
� � 2

n t
�

� n (0) +
Z t

0
exp

�
� � 2

n (t � � )
�

pn (� )d�: (A721)

Equation (5.9) follows from the de�nition of u and Equations (A74) and (A721).

Appendix 8

Proof of orthogonality of vn(R) with the weight b

Remembering Expressions (A714) forvn (R) we can write for n 6= m:
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Remembering Equation (A713) we can write:
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